A-A+
5年级数学小论文
问:15篇五年级下册数学小论文(300字)答:大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星模携与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算咐码悔出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),
问:15篇五年级下册数学小论文(300字)
在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
问:小学五年级数学小论文
妈妈问我:“考考你,如果我要买一个灯泡回家,买哪种的灯泡最划算?”
我思索了一会儿拿桐,不慌不忙地说:“可以这斗芦样算:
5÷1=5
30×5=150(小时)200小时>150小时
还可以这样算:
5÷1=5
200÷5=40(小时)30小时<40小时
由这几步可得出结论,节能灯泡省钱。”
妈妈又问我:“很好。再想想看,还有没有别的办法来算?”
我又想了一会儿,一个字一个字地说:“可不可以百分数?来 算。”
也可以这样算:
5÷200×100=0.025×100=2.5
1÷30×100≈0.033×100=3.3
3.3>2.5
或者这样算:
200÷5×100=40×100=4000
30×1×100=30×100=3000
4000>3000
因此,也是节能灯泡便宜。。”
我和妈妈买了比较划算的节能灯泡回去了。
从这件事中,我知道了:“生活处处有数学”。
我回家用尺子量量这个可乐。的长和宽、高。 发现有一瓶长是一宽是二高是三。1×2×3=滑尺6厘米=6ml 另外一瓶长是二,宽是三高是四。于是我告诉了这个商店的老板说可乐他们的净含量不对。
我妈妈开了文具店,今天是星期天,妈妈有事,叫我去看店。一会,来了一位阿姨,她说要考考我,才能告诉我买什么,她说:“李绝厅毁辉买了一枝铅笔和一个练习本,一共花了0.48元。练习本的价钱是铅笔的两倍。铅笔和练习本的单价各是多少钱?” 我想了想:练习本和铅笔一共是三倍,只要用0.48÷3就能求出铅笔的价格,那练习本的价格也能求出来了。我把答案说了出来,阿姨夸我:“能够仔细的分析题目,真不错!”“你这里练习本每本0。6元,作文本每本0。9元,我要买10本,给你8.1元,不用找,你该给我几本练习本 ,几本作文本?”我想了想说:“先假设10本全是作文本,需要10×0.9=9元,实际付了8.1元,比假设少付了9-8.1=0.9元,实际作文本比练习本多0.9-0.6=0.3元,就可求出练习本是0.9÷0.3=3本,作文本是10-3=7本。”算出来了,阿姨直夸我聪明,我心里美滋滋的,后来阿姨又买来几样文具,结帐时我还沉浸在欢乐之中,结果呢把钱算错了,我没发现,阿姨却对我说:“你呀,一夸你就得意忘形了。把该付的钱的小数点看错了,结果呢我少付15。3元。”“对不起,小数点向左移动了一位,比原来的价格缩小了10倍,相差了9倍,只要15.3÷9=1.7元,由于刚才缩小了并备10倍,所以要1.7×10=17元。”阿姨又买了几个文具,就走了。
今天,阿姨的数学题我一一攻破了伏毕,心想:生活中的数学无处不在,数学博大精深,我要更加努力,争取再上一层楼!
题目是这样的:
一个长方体鱼缸,长6米、宽2米、深1米,制作这个鱼缸至少要多少平方米的玻璃?
我是这样做的:
(6×2+2×1+6×1)×2-6×2
分析我的做法:
我先算出整个鱼缸6个面的总面积,再减去缺少的那个面(上面)的面积。因为鱼缸要养鱼,所以不可能是完全封闭的,往往都是上面作为缸口,所以要减去上面的面积。
方法多种多样,做这一道题还有另一种方法:
(2×1+6×1)×2+6×2
分析这样的做法:
已知鱼缸共有5个面,其中前面、后面是一组,左面、右面是一组,可以先算出前、后枯唯、左、4个面的总面积,再加上下面的面积,就可以求出鱼缸5个面的面积,也就是鱼缸的表面积。
最容易出错的地方:
像这样类型的题目,往往容易出错的有2点。一是不联合实际想,段灶把鱼缸的表面积当做6个面来计算;二是虽然知道鱼缸只有5个面,但却不知道少的面面积应当怎么算。
我的建议:
当你做到这种题目时,应该画一画图来帮助你,并在图形上标明长、宽、高对应的数目,这样题目就一目了然,做起来就没燃培会得心应手了。另外,还要注意单位是否一致!
以上就是我对“鱼缸问题”的分析与见解
那是星期六的一天下午,我嚷着要吃西瓜,妈妈爽快地答应了。于是我和奶奶就去买西瓜.
走进菜市场,我一眼就瞅住了一个西瓜堆儿。这里的西瓜是红瓤的,又大又圆,看着就让人垂涎三尺。
奶奶说:“拆贺给我挑个熟的!”那个小贩在西瓜上敲了敲,说:“包熟!”于是放在电子秤上说:“一斤十块半,3.6斤,17元8角。”奶奶说:“什么?17元8角,这么贵?不买了不买了!”小贩急了,说:“别,别,别,你去其它地方买就不贵吗?我这儿可是全市最便宜的了,我这儿一斤十块半,人家一斤半十五块五了!”
奶奶数学本来就不好,被小贩这么一说便糊涂了,我当时也在想:一斤十块半,也就是1斤10.5元,单价是:10.5÷1=10.5元,而一斤半十五块五,虚稿也就是1.5斤15.5元,它的单价是:15.5÷1.5,我没细算,想想可能应该比10.5多,但是却犯了个致命的错误。
算错就会犯错,我向奶奶使了个眼色,示意让她买,于是奶奶说:“价格能少一点吗?”“不能、不能,本能就比人家便宜,再少,我就亏大了,干脆别卖了。”看着小贩的“真诚”的态度,奶奶于是付了钱,拎着装好西瓜的袋子就走了。
回到家,我把旅誉派这件事告诉给妈妈。妈妈听了之后又问了一遍价钱。我说:“小贩说他这儿一斤十块半,别人那一斤半十五块五。”妈妈哭笑不得,问:“你怎么知道别人那儿贵呢?你再好好的算算”。
“因为这儿是10.5÷1=10.5,而别人那儿是15.5÷1.5,反正他这儿便宜”我理直气壮。
妈妈说:“你呀,太马虎了,15.5÷1.5=10.333……,谁便宜呀!”
通过这件事,我知道了数学在我们日常生活中运用十分广泛,学好数学十分重要,另外还要记住:“不要利用数学骗人,也不能不懂数学而被人骗!”
有好的请尽快答复
大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每小时行45千米,行了2.5小时后停下,这时刚好离东西两城的中点18千米,东西两城相距多少千米?王星与小英在解上面这道题时,计算的方法与结果都不一样。王星算出的千米数比小英算出的千米数少,但是许老师却说两人的结果都对。这是为什么呢?你想出来了没有?你也列式算一下他们两人的计算结果。”其实,这道题我们可以很快速地做出一种方法,就是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米),但仔细推敲看一下,就觉得不对劲。其实,在这里我们忽略了一个非常重要的条件,就是“这时刚好离东西城的中点18千谨肆米”这个条件中所说的“离”字,没说是还没到中点,还是超过了中点。如果是没到中点离中点18千米的话,列式就是前面的那一种,如果是超过中羡晌陪点18千米的话,列式应该就是45×2.5=112.5(千米),112.5-18=94.5(千米),94.5×2=189(千米)。所以正确答案应该是:45×2.5=112.5(千米),112.5+18=130.5(千米),130.5×2=261(千米)和45×2.5=112.5(千米),112.5-18=94.5(千米),兄蠢94.5×2=189(千米)。两个答案,也就是说王星的答案加上小英的答案才是全面的。 在日常学习中,往往有许多数学题目的答案是多个的,容易在练习或考试中被忽略,这就需要我们认真审题,唤醒生活经验,仔细推敲,全面正确理解题意。否则就容易忽略了另外的答案,犯以偏概全的错误。
问:五年级数学小论文500字!!!
今天,我和妈妈在做数学题。妈妈问我:“阳阳,你会算组合图形的面积吗?”我自以为是地说:“当然会了,这么简单!核茄”妈妈拿出8个完全相同小正方体,摆成一个正方形,问我:“总面积怎么算?”我用直尺量了量,一个正方形的一条边大约是3厘米,我说出算式:“一条边3厘米,那么一个正方形的一猜氏昌个面就是3×3=9(平方厘米),一个正方形有6个面,就是9×6=54(平方厘米),8个就是54×8=432(平方厘米)。”妈妈好像很沮丧,说:“你犯了一个致命的错误!既然是组合图形,有些面肯定会重合了!”我恍然大悟:“对哦。”我又重算了一下:重合了1、2、3、4、5……24个面,24×9=216(平方厘米),432-216=216(平方米)。现在对了吧?
过了一会,妈妈又摆出了另一种组合图形,这个图形上下8个,左右都是2个,前后都是4个,问我:“面积怎么算?”我说:“用
12×6=72(平方厘米)就是上面的面积,再用6×3=18(平方厘米)就是左边的面积,再用12×3=36(平方厘米)就是前面的面积,最后用(72+18+36)×2=252(平方厘米)。”妈妈说:“没有穗扒发现一些规律吗?”我看了看,真有嘞!“每个正方体它的上面是什么下面就是什么,左边是什么右边就是什么,前后也一样。”我有些感触。妈妈欣慰地笑了,说“我的女儿真聪明!”
哦,原来如此,组合图形的面积算好前面后面就不要算了,算好上面下面就不要算了,算好左边右边就不要算了。太好了,以后算组合图形的面积就很方便了,你们学会了吗
评论已关闭!